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Model for eutectic organization: The purely kinetic regime
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We analyze the lamellar organization in the solid phase by using a purely kinetic regime based on
physical first principles combined with a phenomenological Landau theory. This model has at least
two advantages over the usual free-boundary-problem formulation: (i) It allows us to show from first
principles the existence of a lamellar organization, which is usually taken as a starting point, and
(ii) it permits us to handle analytically in a relatively simple manner the problem of the existence
of these solutions. This model resembles in some way the phase-field model: the solid-fluid front
is sharp, while the solid-solid interface is smooth and characterized by a continuous change in the
concentration field. We analyze in detail the variety of solutions and map them to the underlying
coexistence phase diagram of the three phases. We show that the growing phase with a modulated
structure ( the “lamellar” eutectic structure) has a higher velocity than any homogenous solution.
The organized structure thus appears from the maximum-velocity principle as favorable against
homogeneous solutions. Other questions related to various symmetry-breaking bifurcations from
the simplest steady and symmetric organization are discussed, where use of the present model may
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become essential.

PACS number(s): 61.50.Cj

I. INTRODUCTION

There has been during the past decade an increasing
interest in the problem of pattern formation of a moving
boundary, such as a solidification front. The discovery of
a myriad of fascinating patterns has stimulated an im-
pressive revival of the field and has even suggested vari-
ous investigations about their relevance to more complex
phenomena such as those encountered in natural systems.
There continues to be a need, however, for simple models
with the aim to get more insight towards the understand-
ing of the intricate nature of the mechanism by which a
pattern can spontaneously be formed.

The eutectic system is an active branch in pattern for-
mation and has recently known an impressive renewed
interest both experimentally [1,2] and theoretically [3-6].
There are several reasons. For example, most solidifica-
tion microstructures are usually either dendritic or eu-
tectic. Generically, the phase diagram of two substances
mixed together has a eutectic point, since the theoreti-
cal critical temperature for phase separation in the solid
phase (at low temperature where enthalpy prevails over
entropy) is above the (generic) azeotropic point. The
presence of an azeotropic feature follows from the fact
that mixing in the solid costs a large stress energy. The
eutectic system is, on the other hand, the first step be-
yond a pure substance (or a very dilute solution), which
is often the exception rather than the rule in real sys-
tems. Eutectics can be thought of as the simplest passive
multi-component systems, in the sense that the growth
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does not involve reaction. Even in such a case we lack a
full understanding of the patterns that may arise.

Since Jackson and Hunt [7] showed that the free-
boundary problem admits a whole family (parametrized
by the wavelength) of steady-state periodic solutions,
work on the eutectic system has advanced considerably
[3-6,8], revealing a variety of other solutions. The inves-
tigations often involve, however, heavy and sophisticated
numerical techniques of the nonlocal and retarded front
equation. A simple but physically relevant model would
therefore be highly desirable.

In this paper we propose such a model. This model is
akin to the widely used phase-field model [9, 10]. Let us
recall that the usual phase-field model for a binary system
[10] consists of introducing two fields: “the phase trans-
formation field” (which describes the transition between
liquid and solid), and the composition field. Our main
concern in this paper is to describe the lamellar organiza-
tion in the solid phase. In a simplified picture, our model
will be characterized by a single field, describing the com-
position distribution in the growing phase. Of course,
eutectic growth usually results from a cooperative diffu-
sive phenomenon between the adjacent regions ahead of
the front. In principle, then, we should introduce a com-
position field in the liquid phase, as well. We shall not
include this complication here. Rather, we make the as-
sumption that the concentration in the liquid (or fluid in
general) phase is kept constant, so that we focus only on
the solid composition to see whether the growing phase
organizes in a lamellar structure or not (and possibly in
more complicated structures; see later). If the coopera-
tive phenomenon is suppressed from the model, another
ingredient must be added to ensure the solidification pro-
cess. This is the kinetic attachment of molecules to the
interface, which becomes relevant if the liquid phase has
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a uniform composition (as we assume). This regime is at-
tained at high velocity when the freezing time, given by
d/V, where V is the growth velocity and d the liquid-solid
extent, is of the order of the mass diffusion time, given by
D/V?%, D being the diffusion constant. By taking typical
values d ~ 10 A and D ~ 10~% cm?/s, we find that the
kinetical regime is attained for velocities of the order of 1
m/s, which are by now accessible velocities in rapid solid-
ification experiments which use a pulsed laser. It is also
possible to imagine artificial means to reach this regime.
This situation could in principle be achieved in, at least,
two ways: (i) By strongly stirring the liquid phase so that
the hydrodynamic boundary layer becomes small on the
scale of wavelength of interest, and (ii) by considering the
growth from a turbulent gas. We shall consider, more-
over, the transition width across the fluid-solid interface
to be infinitely small. The condition across the front re-
duces thus to a usual free-boundary condition.

This paper is organized as follows. In Sec. II, we
present the model and introduce appropriate scales to
make the equations dimensionless. In Sec. III, we look
for steady-state solutions, both homogenous and mod-
ulated. In Sec. IV, we present the overall picture on
steady growth. Section V is devoted to discussion of the
results and to speculations about more complex struc-
tures. Section VI contains the conclusion.

II. THE MODEL EQUATIONS

We consider that the fluid, whose composition is kept
constant, has prescribed chemical potentials ur, and
prp for the two components A and B of the alloy. The
net mass fluxes J4 and Jp across the fluid-solid (from
the fluid into the solid) interface are defined as

Ja =Wy(pra — psa), Jp =Ws(prp — pss), (1)

where usa and psp are the chemical potentials in the
solid phases (to be defined below), and W4 and Wpg
are phenomenological kinetic coefficients. Note that we
consider small departures from equilibrium, a situation
which is often fulfilled for molecularly rough interfaces
and that we disregard cross terms. The growth velocity
v, (only its normal component enters), and the compo-
sition ¢(z, t), of the growing solid, are related to mass
fluxes by

Ja=(1-=c)vn, Jp=cu,. (2)
The main point of the model is to write the functional
relation between the chemical potentials ps4, pusp, and
the solid composition field ¢. Since we are interested in
the solid organization we consider that the composition is
independent of the z coordinate (which is the coordinate
along the growth axis). The functional relations are then
given by [11]

psa=fule) —cT0e — Lac? 4 ace” 4 o0x, 3)
ofs Loe - a(l =)' + o2k,

pusp = fa(c) + (1 —¢) 9% " 2

(4)

where f,(c) is the free energy per atom for a homogeneous
solid phase, and « is a wall energy parameter which enters
the total free energy & la Cahn and Hilliard [12],

F=07! /[f, + 3oc'?)dQ, (5)

where the integration is performed over the solid phase
and the prime designates derivative with respect to z.
We have included in Egs. (3) and (4) the Gibbs-Thomson
corrections to the chemical potential, where « is the front
curvature (taken as positive for a convex profile), o is the
surface energy, and 2 is the atomic volume.

In order to keep the analysis simple, we shall confine
ourselves to the symmetric model: the A-rich and B-rich
phases have exactly the same properties, and the fluid
composition is kept at the value 1/2,

Wa=Wp =W, pra=prB = ur. (6)

In order to allow for a thermodynamical instability lead-
ing potentially to phase separation of the solid phase, f,
is taken to have the generic form (Fig. 1)

b (7)

where fg, @, and b are phenomenological Landau param-
eters. We find it convenient to introduce dimensionless
quantities. For that purpose, we introduce

length scale : I, = y/a/a,

concentration scale : 7. = 4/ &/25,

velocity scale : V, = Wa? /4I~),
energy scale : E, = a?/4b.

N

fo=fo—ai? +bi*, f=c—

Note that 7, correspond to the usual equilibrium com-
position of the two solid phases (at a given temperature)
and . is the characteristic width of the boundary be-
tween the two phases (e.g., the o and (3 phases in the
eutectic system).

Substituting (7) into (3) and (4), and making use of
1 and 2, it is a simple matter to write a set of two
coupled equations for the unknown quantities, 7(z,t)
(the reduced solid composition) and the fluid-solid profile

((z,t):

FIG. 1. A schematic plot of the free energy.
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an{ A +20* —n*+ ny DS
n nT—n tn (1+<:2)3/2

+(2an* +1)(20° —2n-7") =0, (9)

V+¢

2/TT 2

=A -2 +3n* + 1'% - 2"

dOC”
+ (1+ (r2)3/2 ’ (10)
where
_ kBF — Jo _ o _ _‘?
A———E, ) do—_lcE,’ G,—S. (11)

Note that all other quantities appearing in (9) and (10)
(e-g., ¢, V, ...), have been scaled by the quantities defined
in Eq. (8). The quantity A in Eq. (11) plays the role of
a reduced driving force.

III. STEADY-STATE SOLUTIONS

We shall deal in this section with simple steady-state
solutions of Eqs. (9) and (10). We distinguish between
homogeneous and modulated solutions.

A. Homogeneous steady-state solutions

These solutions correspond to a planar front moving
at a constant speed V', with a constant solid composition
7o to be determined below. It is easy to see that Eqgs. (9)
and (10) have two such solutions:

V=2A, no=0, (12)

(13)

M=3ll-at+ /@ 12 +302a - A)].

Figures 2(a) and 2(b) display the behavior of V and 7 as
functions of the driving force A. Solution (12) exists for
all A > 0 (i.e., for ur > fo; note that fo is the maximum
in Fig. 1), while solution (13) exists only in the interval
0 < 7 < 1, which amounts to —1 < A < 2a™!. At large
enough supersaturation, only the trivial solution (7 = 0)
survives. By lowering the supersaturation, a new branch
[0 # 0; Eq. (13)] branches off the trivial solution at the
bifurcation point A = 2a~! (see Fig. 2). The nontrivial
solution ceases to exist at A = —1, which corresponds
to the usual thermodynamical equilibrium between three
phases (the eutectic point).

A linear stability analysis shows that both homoge-
neous solutions are stable.

B. Spatially modulated solutions

An interesting question is whether Egs. (9) and (10)
support modulated solutions characterized by a spatially
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FIG. 2. (a) The behavior of the solid composition as a
function of the driving force A. (b) The behavior of the
growth velocity as a function of A. The dashed line represents
the trivial solution (70 = 0), while the full line represents the
nontrivial one (n # 0). We have taken a = 1.

varying composition 7(z) and a front profile {(z). In
general, answering such a question requires a numerical
integration. Rather than resorting to “brute force,” we
wish to push further the analytical analysis. To do so,
some approximation is necessary. We assume that front
depletion is small enough so that we can neglect ¢'? in the
square root entering in the left-hand side of Eq. (10) and
in the curvature. In the next section, we discuss in some
detail the condition under which such an assumption is
permissible.

Given the above assumption, Egs. (9) and (10) can be
decoupled. Multiply Eq. (10) by an and subtract it from
Eq. (9). The result is

|4
77"+217-—2n3—g%—-=0, (14)

which constitutes a closed equation for 7, parametrized
by the growth velocity V. This equation is analogous
to that of an anharmonic oscillator without dissipation,
where z plays the role of time. This remark will be useful

later. Once 7(z) is determined we can deduce ¢(z) from
Eq. (9), which gives

|4
—dol" = A =20+ 30" + 9% 20" — . (15)
The simplest modulated structure corresponds to a pe-

riodic solution. In order to investigate its existence, we
proceed as follows: Equation (14) has the first integral
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where A is an integration constant. Equation (16) is
analogous to that of an anharmonic oscillator without
dissipation, where A plays the role of the total energy.
More precisely we can rewrite Eq. (16) as

Er + Ep =A, (17)
where
Ex =17, Ep=2(1— %)nz—n“ (18)

represent the analogues of the kinetic and potential en-
ergy, respectively, and z plays the role of time. In or-
der that the system exhibit oscillations, we must have
V < 4/a, a condition which ensures the existence of a lo-
cal minimum in the potential energy. Moreover the total
energy must be positive, but smaller than the maximum
value of the potential energy which is easily found to be
(1 — aV/4)2. Oscillations are then possible under the
conditions

4 aV\?
- 0<A 1—— ). 19
V<o, 0<A< ( 1 ) (19)
The maximum amplitude of oscillations is attained when

the kinetic energy vanishes. When condition (19) holds,
we can write Eq. (16) as

aV
n? = —2(1 - —)772 +n*+A=(n*—nd)(n® - nd),

4
(20)
where
aV aVv?
Tlf,2=1—*4‘q: (1——4—) —A. (21)
We obviously have the inequality
0<ni<n;. (22)

It is seen from Eq. (20) that the kinetic energy vanishes
at n = £n; and n = x7,. Since oscillations are possi-
ble around the minimum potential energy only, we con-
clude that the oscillation amplitude is 7;. More precisely
the modulated solution is characterized by oscillations of
n(z) between n; and —n; ( see below). Figure 3 summa-
rizes the analogy with the anharmonic oscillator.

Let A denote the (dimensionless) periodicity of the
structure. Then integrating Eq. (16) from 0 to \/2
(where 7 varies from 7; to —7;), we obtain

A= %K(Th/ﬂz) ) (23)

where K stands for the complete elliptic integral. Equa-
tion (23) provides a relation between the constant of in-
tegration A, A, and V. A second relation can be obtained
by exploiting Eq. (14). Using Eq. (15) we can rewrite
Eq. (14) as
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FIG. 3. A schematic view on the analogy with the an-
harmonic oscillator. Oscillations take place between —7; and
7. For A = 0 (A is the total energy) there is no oscilla-
tion: the system will spend an infinite time in the position
n = 0, a situation which corresponds to the trivial homoge-
neous solution represented by the dashed line in Fig. 2. For
0< A< Amax =(1-aV/ 4)2 there are oscillations. In the ex-
treme limit A = Apax the system is initially, say, at n = —m
(in this case we have a degeneracy: 71 = 72), and will move
to the position n = 7, after an infinite time. The stay time is
logarithmically diverging (see Eq. (30)]. This solution is the
one represented by the full line in Fig. 2.

174
—do¢" = A — 7 +A- Ezznz ) (24)

Integrating this equation from z = 0 to z = A/2, and
using dz = dn/n’ together with Eq. (20), we obtain

Z(a-F+a)Km/m)

—aVna[K(m/n2) — E(m/n2)] =0, (25)

where E designates the complete elliptic integral of the
second kind. For a fixed A, Egs. (23) and (25) provide
A and V as functions of A, which we are first going to
investigate in some limiting cases, and a comparison with
the usual free-boundary problem will be given.

A nonmoving front

An instructive case is the one where the solid-fluid
front is not moving (V = 0). In this case Eq. (21)
becomes

nl’zzl:f:VI-A, (26)

while Eq. (25) yields (upon using the properties of the
elliptic functions)

A=-A. (27)
The periodicity A is obtained from Eq. (23),

4 1-vV1+A
A= K |4 =
Vit Vit s 1+VitA

This solution corresponds to a situation where a fluid is in
equilibrium with a solid having a modulated composition

(28)
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and with a periodicity given by Eq. (28). Obviously, this
solution exists in the range A € [—1, 0], a domain which
corresponds to the one between the minimum and the
maximum in Fig. 1.

Using the properties of the elliptic functions, it is easy
to identify from (28) the two extreme limits

-A
A -0, Ac:m/i(l—%%), A5 (29)

A — -1, Az4ln(( 2v2 ),

NI
Mol ———"12+A . (30)

In the first case the structure is modulated with a fi-
nite wavelength and a small amplitude 7;, while in the
second case we approach the equilibrium concentration
(n =1 in reduced units) with a logarithmically diverging
wavelength. Note that Eq. (29) represents a limit to the
dashed curve in Fig. 2(b), where there the solution is
homogeneous (7 is independent on z). The case of Eq.
(30) shows that we tend to a homogeneous solution, the
one represented by a solid line in Fig. 2.

IV. THE OVERALL PICTURE
OF STEADY STATES

As stated in the preceding section, Egs. (23)-(25) are
the main results for steady growth, that we would like
to treat in detail here. These are two equations for the
unknowns A, V, A, A. This means that the total num-
ber of degrees of freedom is equal to 2. One of the two
equations serves to determine A as a function of A, V, A.
The second one gives a relation between these three pa-
rameters, as in the usual formulation of eutectic growth.
In free growth, the supersaturation A is a quantity that
is fixed by the operator. We are left then with two pa-
rameters A and V which are related to each other. Our
strategy is then to fix A and determine the couple A and
V for each wavelength from Egs. (23)-(25). This pro-
vides us with series of curves V(A) parametrized by the
supersaturation. The computation involves a standard
Newton-Raphson scheme for solving the two nonlinear
algebraic equations. Figure 4 displays the behavior of
V as a function of A\. Some remarks are in order. The
curve V()) takes on a maximum at a particular value of
A. On the other hand, V vanishes below some critical
value of A which is typically the nucleation radius. The
behavior is similar to that obtained in the usual eutec-
tic formulation. The existence of a maximum velocity
growth raises the possibility that that state is the actu-
ally selected one. We do not believe, however, that such
a principle holds exactly. Nonetheless, its consequences
have been explored—and often supported—in the metal-
lurgical literature [13].

At this point we have not yet answered an important
question: what discriminates between the homogeneous
solutions discussed in Sec. IIT A and the modulated one.

1.0 - A=02 |
| A=0
\' A=—02
05 -
0.0 L -— L
0.0 10.0 20.0 30.0

A

FIG. 4. The growth velocity V as a function of the wave-
length for various supersaturations. Here a = 1.

For that purpose, we evaluated the maximum growth ve-
locity for each supersaturation, and compared these ve-
locities to those presented in Fig. 2(b). Our results are
summarized in Fig. 5. There, besides the two homo-
geneous solutions (the solid and dashed lines), we plot
(dashed-dotted line) the maximum velocity for the mod-
ulated structure. An interesting result emerges here: the
modulated structure has a higher velocity than the ho-
mogeneous ones in the range A € [—1,2a7!]. If we admit
the usual maximum velocity principle—the fastest pat-
tern wins—the modulated structure should prevail if the
supersatuation is not too high. Beyond A = 2a~! (or
equivalently V = 4a™!) there is no modulated structure
at all, and the only solution that survives is the trivial
homogenous solution (n = 0). This is consistent with our
condition (19). In some sense, when the supersaturation
is too high, the fluid is frozen at its nominal composition
in the solid phase.

The solution of Eq. (16) can easily be expressed in
terms of an incomplete elliptic integral [14]. We represent
in Fig. 6(a) the typical behavior .of the concentration
in the solid phase, which shows a modulation from —7n;
to 71, characterizing the lamellar structure. Once 7(z)
is determined, a simple integration of the second order
equation (24) yields the front profile displayed in Fig.

-6(b). We have included vertical lines as guides to the eye

4.0 I
30 | / -
e
V 20F ) {;/ .
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0.0 ‘ .
-1.0 o .
-1.0 0.0 1.0 2.0

FIG. 5. The growth velocity as a function of the driving
force. The trivial homogeneous solution (dashed line), the
nontrivial homogeneous solution (full line), and the periodic
solution where the maximum velocity is taken as the actual
growth speed (dashed-dotted line). Here a = 1.
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FIG. 6. (a) A typical behavior of n(z) for the periodic
solution. (b) A typical front profile. Here a = 1, do = 1, and
A = —-0.6.

in order to easily distinguish between the two lamellae.

The determination of these quantities has been made
under the assumption that the front depletion is small so
that we kept only the leading terms in (. We would like
to discuss this assumption now. Since our aim is to give
a rough estimate, we shall analyze the two sets of Eqgs.
(9) and (10) in a limit where a full analytical analysis is
possible. This is the case where 7; = 7,. In this case the
modulation is infinitely long [see Eq. (23); K(1) = oo,
while A = (1 — aV/2) from Eq. (25)]. This allows us to
obtain from Eq. (16) an explicit form for 7(z),

n(m):,h—%tanh(z,/l—%) . (31)

The determination of the front profile {() is straightfor-
ward from Eq. (10)

((a) = — 2 lafcosh(ma)] (32)

where we recall that 7o is the composition of the homo-
geneous solution [see Eq. (13)]. The maximum value of
¢’y Chaaxs 18 Chax = aVno/(2do) = 2n0(1 — n2)/do, where
use has been made of Eq. (13). We should now deter-
mine the value of 7o that provides the maximum (/. We
maximize {’ by differentiation with respect to 7o to find

, 4
max 3\/§d0 .

In conclusion, the assumption ¢’ << 1 amounts to dg >>
P

(33)

1. From the definition (11), do ~ (Er/E,)(l/l.), where
Er is the fluid-solid surface energy, and ! is an atomic
distance. Recall that E, is the solid-solid wall energy,
and I is the wall width, so that typically dy ~ 1. Since
we cannot be certain how valid our assumption is, we
have solved the full equations with dg = 1. Although
there are variations of up to 30%, the overall picture of
our findings remains unaltered.

V. CONCLUSION AND OUTLOOK

We have presented an extremely simple version of eu-
tectic growth in the kinetic regime, which has allowed us
to deal with many points analytically, or by using ele-
mentary numerical methods. This analysis has allowed
us to capture the essential results. A feature found here
is that a modulated pattern has a higher growth velocity
than homogenous ones, a fact which provides an out-
of-equilibrium explanation for the observation, in stan-
dard experiments, of lamellar eutectic growth rather than
homogeneous growth. However, at large enough super-
saturation, the modulated pattern ceases to exist, while
the fastest growth is a homogenous one. This feature
may be related to the experimental observation [15] that
above a certain supersaturation, a homogeneous plane
front emerges from the initially lamellar structure be-
fore cyclic dynamics take place, leading ultimately to a
banded structure.

Before concluding, let us make some remarks which are
pertinent to future investigations. It is now well known
that the eutectic system possesses a variety of solutions

(a)

2.0 : .
10+ —1——T
C 0.0 + o Bl o |B .
-1.0 + :
_20 1 i 1
-3.0 -1.0 1.0 3.0
X
(b)
2.0 . ; -
!
1.0 - 1
C oo} o |pla| B 9
-1.0 + .
|
2.0 v ' 9
-3.0 -1.0 1.0 3.0
X

FIG. 7. (a) The case where the extent of the o and 3
phases are the same. Here we have two periods. (b) The case
where the symmetry is broken: the period has doubled. Both
cases are schematic.
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[5]. Among them are the broken-parity solutions, the
vacillating-breathing oscillatory mode, the optical one,
etc. reported on in many situations. Another promising
line of investigation concerns the fundamental question
of the existence of wavelength selection. For example,
the full free-boundary formulation shows that for a sym-
metric phase diagram (where the a and § phases are
equivalent, as considered here) the pattern suffers a new
type of symmetry-breaking [16] bifurcation resulting in a
pattern consisting of a large a lamella of extent L, fol-
lowed by a thin 3 one of extent I, then a thin a one
with an extent ! and again a large 3 one with an ex-

tent L and so on, as schematically shown in Fig. 7(b).

If we take the case L = [ as a starting point [Fig. 7(a)],
then we are in a situation where the pattern undergoes a
spatial period-doubling bifurcation (Fig. 7(b)]. More com-
plicated patterns than the subharmonic cascade (where
the wavelength of the bifurcating state is generically ir-
rationally related to that of the mother state) are also
possible [16]. There are also hints [16] for the existence,

3165

within the full formulation, of a second spatial period-
doubling cascade (or a more complicated irrational cas-
cade), and it is likely that this scenario repeats itself
ad infinitum. All the bifurcations may accumulate [16]
close to the minimum undercooling point (or equivalently
close to the maximum velocity point). This means that
the apparently selected state reported on in many exper-
iments (which corresponds—at least approximately—to
the maximum velocity) is close (in parameter space) to
an infinite set of attractors, which is a signature of the
fragility of the apparently periodic state against a spa-
tially disordered one. These questions, among many oth-
ers, are now being investigated within the current model,
which contains enough essential physical ingredients to
expect rich dynamics to occur. Since any analytical or
numerical effort becomes increasingly complex within the
usual free-boundary formulation, the model presented
here is a promising candidate on which to study the var-
ious patterns. We hope to report along these lines in the
near future.
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